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Overtones of the Si-H stretching-bending polyad of the SiHD3 molecule are studied using an internal
coordinate force field model. The potential parameters are optimized by fitting to the experimental band
centers. The Fermi resonance between the Si-H stretching and bending motions is insignificant due to
cancellation of the contributions from kinetic and potential terms. This suggests a slow redistribution of
vibrational energy between these two degrees of freedom and induces local mode character of respective
vibrations. Band intensities are calculated by using ab initio one- and three-dimensional dipole moment surfaces
(DMS). These agree reasonably well with the observations. The successful reproduction of relative intensities
between the (n1 - 1)V1 + 2V5 stretching-bending combination bands and then1V1 stretching bands establishes
the importance of the bending motion in the multidimensional DMS for intensity investigations.

Introduction

The dynamics of molecular vibrations have been of interest
for some time due to their importance for the development of
bond-selective photochemistry. For X-H stretching vibrations,
there are two limiting cases: On one hand, local mode behavior
is found in some XHn (X ) S, Se, Te; As, Sb, Si; Ge and Sn;
n ) 2, 3, and 4) molecules1,2 and their isotopomers, which
implies that the vibrational energy remains localized in an
individual X-H bond for a long time. On the other hand, the
strong Fermi resonance between the C-H stretching and
bending motions in CHY3-type species (Y) D, F, Cl, Br, I,
and CF3)3-5 leads to a fast intramolecular vibrational redis-
tribution (IVR) between these degrees of freedom. It should
be instructive to study the connection between these two
extremes.

The SiHD3 molecule provides us some possibilities for this
purpose because it is a near-local-mode molecule with an
isolated Si-H chromophore that is analogous to the C-H
chromophore in CHY3 species. One might argue that the strong
Fermi resonance between the stretching and bending motions
is specific for the C-H chromophore because for the other X-H
chromophores the stretching fundamentals are far away from
the first bending overtones. However, the corresponding energy
differences in the CHBr3

4 and CHI35 molecules are also large,
while the Fermi resonance is still prominent. Moreover, from
the point of view of the internal coordinate force field model,6-11

there are both kinetic and potential contributions to the Fermi
interactions, the former being always present. Therefore, it is
desirable to gain deeper insight into this problem.

Another motivation for the present study comes from the
modeling of the intensities of the Si-H stretching-bending
polyads in SiHD3 as excitation increases. Experiments show
that the intensities of the stretching bands decrease rapidly and
uniformly from V1 to 3V1. However, this trend is interrupted for
4V1, whose intensity is slightly larger than that of 3V1.12

Moreover, it is usually assumed that only the C-H or X-H
stretching motions carry absorption intensity and that the
stretching-bending combination bands will borrow some inten-
sity from the pure stretching overtones through resonances. Such
an assumption has been successfully applied to CHY3 species,3-5

showing that the relative intensities within each Fermi resonance
polyad depend largely on the mixing of wave functions through
Fermi resonances. It will be interesting to see if this is also
true for SiHD3.

As one of the near-local-mode molecules, SiHD3 has been
the subject of several low and high-resolution infrared13-23 and
microwave spectroscopic studies.24,25 The V1 state was found
to be perturbed by unknown dark states. A definite perturbation
was also observed in the 2V1 band whenJ′ g 13.13 By contrast,
the 6V1, 7V1, 8V1, and 9V1 states were found to be free of
perturbations.17,19,20The 3V1 and 4V1 states have not yet been
described experimentally, but their band origins were predicted
theoretically by Wang and Sibert26 by high-order canonical Van
Vleck perturbation theory (CVPT) based on a high-level quartic
ab initio force field.27 According to these authors, the Si-H
stretching states in silane and its isotopomers are generally little
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affected by Si-H bending, although some of them are perturbed
by states due to other vibrational combinations.

In this work, we will focus on the Si-H stretching and
stretching-bending overtones of SiHD3. Vibrational wavenum-
bers and intensities of stretching-bending overtones up to 9000
cm-1 (including 3V1 and 4V1) will be reported as obtained from
Fourier transform infrared (FTIR) spectra recorded in Wupper-
tal.12 Transition frequencies and intensities will be studied using
a chromophore force field model in terms of internal coordinates.
The potential parameters will be optimized by fitting to the
experimental band centers. One- and three-dimensional dipole
moment surfaces (DMS) will be calculated ab initio. Band
intensities will be determined by use of the ab initio DMS and
compared with the observations.

Experiment

The spectra of SiHD3 were recorded using a Bruker IFS120HR
Fourier transform spectrometer. Details of the overtone spectra
will be reported elsewhere.12 Here we describe only those
aspects which are relevant to the present work. The spectra were
assigned vibrationally mainly on the basis of the CVPT
calculation by Wang and Sibert.26 The band centers were
determined from low-resolution (0.2 cm-1) spectra. For the 3V1

and 4V1 bands, theJ structure was resolved, and theK structure
was partly resolved. The band centers were determined by taking
advantage of a fit of theK ) 0 transitions only. The spectra
above 3000 cm-1 are dominated by overtones of the Si-H
stretchingV1 mode and combinations comprising of the Si-H
stretching and other vibrational modes. Among these bands, the
Si-H stretching-bendingn1V1 + n5V5 bands are prominent. Here,
n1 andn5 are the vibrational quantum numbers of theV1 andV5

modes, respectively.
The absolute intensities of the FTIR spectra were obtained

by means of integration

whereσ is the absorption cross section at wavenumberV. The
results given in this work were obtained by averaging the
integration results over a variety of spectra. The relative
intensities were calculated accordingly. However, integration
could not be performed for some bands where overlap is strong.
In these cases, absolute intensities were not determined, while
relative intensities were estimated from a comparison of the
height of the strongest, fairly sharp peaks (e.g., Q branches) of
the overlapped band and a band amenable to integration. It
should be pointed out that the uncertainties of the experimental
intensities are quite large. The uncertainties of experimental
absolute intensities are estimated to be less than 50% for the
bands of medium intensity and less than 100% for the others.

Absolute intensities of the 7V1 and 8V1 bands were determined
earlier19 by means of intracavity laser absorption spectrometry
(ICLAS) and reported as

The relationship between these two definitions is approximately
as follows:

whereV0 denotes the band center of the transition. To make
comparisons, we computed the intensitiesI for the ICLAS

spectra from eq 3. The uncertainties of intensities of the 7V1

and 8V1 bands were reported to be 30%.

Dipole Moment Surface

The ab initio calculations were carried out at the CCSD(T)
level (coupled cluster theory with all single and double
substitutions from the Hartree-Fock reference determinant28

augmented by a perturbative treatment of connected triple
excitations29,30) using the correlation-consistent polarized valence
quadruple-ú cc-pVQZ basis set.31 The calculations employed
the Molpro2000 package32,33 both for geometry optimization
and for single-point calculations to generate the DMS.

The optimized equilibrium Si-H bond length isRSiH )
1.47983 Å. The dipole moment was calculated numerically as
energy derivative by finite difference. A finite dipole field was
added to the one-electron Hamiltonian. The field strength was
chosen to be 0.005 au. Actually, a variety of values for the field
strength were tested (ranging between 0.002 and 0.01 au), but
the differences between the resulting molecular dipole moments
were negligible. When generating the DMS, we kept the SiD3

frame fixed at its equilibrium configuration. For the one-
dimensional DMS, the dipole moments were calculated as a
function of the Si-H bond length displacement. In the case of
the three-dimensional DMS, the Si-H stretching and two
orthogonal Si-H bending motions were taken into consideration.

It should be stressed that our internal coordinate model
neglects the contributions of motions of the SiD3 frame to the
DMS and the force field (section IV). The normal-coordinate
models (without frozen SiD3 frame) allow for such contributions
and therefore tend to be superior for low dimensional sub-
spaces.9,34,35 Such models have been applied successfully in
elaborate spectroscopic and quantum dynamical studies of the
Fermi resonance in CHD3.36-38 On the other hand, the internal
coordinate model has been shown to reproduce the vibrational
energy levels and infrared intensities of CHD3 quite well,10

implying that it may be a good first approximation to neglect
the effect of harmonic coupling between the C-H chromophore
and the CD3 frame vibrations in CHD3.10 We expect that this
also applies to SiHD3.

For the one-dimensional DMS calculation, 30 data points
were obtained by scanning the Si-H bond length displacement
r ) R - Re in steps of 0.05 Å ranging from-0.6 to 0.85 Å,
whereR denotes the instantaneous Si-H bond length andRe

the equilibrium bond length. The corresponding CCSD(T) dipole
moments are generally close to those computed previously by
a density functional method.39 The differences between these
two data sets are small when the displacement is small but
become larger as the displacement increases. We expect that
the high-level CCSD(T) method used here yields more accurate
results, though it might also start to diverge if the bond is
sufficiently stretched.

We find that the DMS of SiHD3 does not possess a strong
nonlinearity as in the case of CHCl3,40 CHBr3,41 and CHI3.42

As the asymptotic behavior forR f ∞ is unimportant for our
intensity calculation,40,43,44a polynomial function up to the fifth
order was employed to fit the DMS

Here,Mz is the dipole moment component along the molecular
C3V axis, andCm00

z is an expansion coefficient. Despite the
poor asymptotic behavior, a good fit has been achieved for these

I ) ∫σ(V) dV (1)

G ) ∫σ(V) d(ln V) (2)

I ) GV0 (3)

Mz(r) ) ∑
m)1

5

Cm00
z rm (4)
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data points (see Figure 1). The fitted parameters denoted as 1D-
DMS are listed in Table 1.

When calculating the three-dimensional DMS, we generated
the grids by scanning the bond length displacementr in steps
of 0.10 Å ranging from-0.40 to 0.40 Å (z direction) and two
orthogonal (x,y) H-Si-D angle displacements∆φi ) φi - φie

in steps of 2° ranging from-8° to 8°, whereφi andφie (i ) 1
and 2) denote the instantaneous and equilibriumi-th H-Si-D
angles. The third H-Si-D angleφ3 depends onφ1 andφ2. We
point out that our scanning steps are larger than those typically
applied in force field calculations due to the fact that we must
find a compromise between a wide scanning range and a small
number of data points. We checked that the scanning steps used
presently are sufficient to produce realistic results. In total, 405
data points were calculated. The raw data were transformed into
symmetrized internal coordinates

The dipole moment vectorM has three components,Mx, My,
and Mz, x, y, and z being the principal inertial axes in the
equilibrium configuration. We found that the axes of the Eckart
frames are almost superimposed to the principal inertial axes
due to the small bending angles. This suggests that the principal
inertial axes reference system used in this work are a good
approximation to the Eckart reference frame.45-49

According to the dipole transition selection rules for mol-
ecules ofC3V point group, theMz component leads to totally
symmetric (A1) transitions, while theMx and My components
give rise to E symmetry transitions. All components are
expanded in symmetrized internal coordinates. This treatment
is different from the expansion of DMS in rectilinear normal
coordinates. The expansion formulas are as follows:50

whereCmpq
x , Cmpq

y , andCmpq
z are expansion coefficients,m, p,

andq are zero or positive integers,p - q g 0, andθ( ) θ1 (
iθ2. The relationship between the expansion coefficients of the
Mx andMy components is as follows:

wheren is zero or a positive integer. Such a relationship is
helpful in fitting theMx andMy components.

In practice, it is unnecessary to include many high-order terms
in the fit of the three-dimensional DMS, since the accuracy of
the ab initio DMS may not be sufficient to determine high-
order terms. The results forMx andMy components are listed
in Table 1 in the second column. For theMz component, two
sets of expansion coefficients were obtained, with theC030

z

term being included in the first set (denoted as 3D-DMS1) and
omitted in the second (denoted as 3D-DMS2). Inclusion of more
terms does not reduce the RMS values significantly and has
negligible effect on the intensity calculations.

Internal Coordinate Force Field

A reduced three-dimensional Hamiltonian model in terms of
curvilinear internal coordinates11 has been applied in the present
study. Only the SiH stretching and bending vibrations are
included. Here, we give just a brief description of the model
and refer to the literature for details.11 The vibrational Hamil-
tonian takes the form

where

and

In the above equations, the curvilinear internal Si-H stretch-
ing displacement coordinate is denotedr, andθ1 andθ2 are the
symmetrized Si-H bending coordinates, as mentioned above.
Here,pr is the momentum conjugate tor, andpθ1 andpθ2 are
the momenta conjugates toθ1 andθ2, respectively;pθ

2 ) pθ1

2 +
pθ2

2 , pθ( ) pθ1 ( ipθ2, andθ2 ) θ1
2 + θ2

2. The Morse coordinate
is denoted asy ) 1 - exp(-ar), wherea is the Morse parameter.
Explicit expressions for the kinetic energy expansion coefficients
grr, gθθ

0 , andgi(i ) 1, 2, ..., 7) are given in detail elsewhere.11

Figure 1. One-dimensional dipole moment surface (Mz) of SiHD3.

θ1 ) (2∆φ1 - ∆φ2 - ∆φ3)/x6

θ2 ) (∆φ2 - ∆φ3)/x2 (5)

Mz(r,θ1,θ2) ) ∑
m

∑
p-q)3n

Cmpq
z rm(θ+

p θ-
q + θ+

q θ-
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Mx(r,θ1,θ2) ) ∑
m

∑
p-q)3n(1

Cmpq
x rm(θ+
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q + θ+
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) (7)

My(r,θ1,θ2) ) ∑
m

∑
p-q)3n(1

Cmpq
y rm(θ+

p θ-
q + θ+

q θ-
p

2i
) (8)

Cmpq
x ) Cmpq

y , whenp - q ) 3n + 1 (9)

Cmpq
x ) -Cmpq

y , whenp - q ) 3n - 1 (10)

H ) T + V (11)

T ) 1
2
grrpr

2 + 1
2
gθθ

0 pθ
2 + 1

2x6
g6(p+θ+p+ + p-θ-p-) +

1
24

(g4 + 2g5)(p+θ-
2 p+ + p-θ+

2 p-) + 1
24

(2g4 + g5 +

3g7)(p+θ-θ+p- + p-θ-θ+p+) + 1
2
a-1 g1ypθ

2 +

1
2
g2pr[(θ1pθ1

+ θ2pθ2
) + (pθ1

θ1 + pθ2
θ2)] + 1

4
(a-2g3 +

a-1g1)y
2pθ

2 (12)

V ) Dey
2 + 1

2
Fθθθ2 + 1

12
Fθθθ(θ+

3 + θ-
3 ) + 1

24
Fθθθθθ4 +

1
2
a-1Frθθyθ2 + 1

4
(a-2Frrθθ + a-1Frθθ)y

2θ2 (13)
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Definitions of the potential energy parametersDe, Fθθ, Fθθθ,
Fθθθθ, Frθθ, andFrrθθ are as customary and have also been given
explicitly in the literature. They will not be repeated here.

A FORTRAN code has been developed for the present study,
which was utilized to first optimize the potential surfaces by
fitting to the observed energy levels and then to calculate the
intensities by using the optimized potential surfaces and ab initio
DMS. The optimizations were performed by a nonlinear least-
squares algorithm.51 The vibrational wave functions and eigen-
values were calculated variationally. The Morse functions were
chosen to be consistent with the parametersa, De, andgrr. The
harmonic oscillator basis functions were chosen to be consistent
with the kinetic coefficientgθθ and force constantFθθ. The
matrix elements for all terms of the Hamiltonian are given in
ref 11. We adopted the described two-step procedure11 to reduce
the sizes of the Hamiltonian matrices. The basis sets11 were
constructed as follows: The maximum vibrational quantum
number for the stretching and bending modes weren1 ) 10
and n5 ) 30, respectively. The maximum vibrational angular
momentum quantum number for the bending mode wasl ) 6.
The highest zero-order energy of the pure bending basis
functions was 27 000 cm-1, while that of the stretchingsbending
basis functions was 36 000 cm-1.

In total 15 experimental band centers12 were used as input
data, with the one at 2531 cm-1 being omitted due to large
experimental uncertainty (see also Table 4 below). Standard
weights of 1.0 were assigned to all data, expect for two
overlapped bands at 1690 and 5943 cm-1 that were given
smaller weights (0.2). The cubic bending termFθθθ which will
couple states with different vibrational angular momentum
numbers was constrained to zero because there is at present no
experimental evidence for this kind of coupling. To overcome
the strong correlation betweenFrθθ andFrrθθ, we adopted the
method11 to constrainFrrθθ and the whole coefficient of they2θ2

term to zero. This treatment removed the interdependence and
yielded a fit with a root-mean-square (RMS) deviation value
of 0.66 cm-1, which is smaller than the experimental uncertainty.
The kinetic coefficients and optimized potential parameters are
listed in Table 2. The energy levels of the stretching overtones
were also modeled by a Morse oscillator whose parameters were
obtained from a fit to the experimental data.12 The results are
ω ) 2253.92(18) cm-1, andωx ) 33.559(21) cm-1, with an
RMS ) 0.365 cm-1. The uncertainties given in parentheses are
1 standard error in the last significant digits.

Consistent with the results of the recent CVPT study,26 the
Fermi coupling between the Si-H stretching and bending

motions is unimportant for SiHD3, and the corresponding wave
functions mix only very slightly. The reason for this very small
stretching-bending coupling is the cancellation of contributions
from the kinetic and the potential coupling terms. This can be
understood as follows. By checking the Hamiltonian matrix
elements, we find that the kinetic coupling term, (1/2)a-1g1ypθ

2,
and the potential coupling term, (1/2)a-1Frθθyθ2, dominate the
Fermi interactions. The corresponding matrix elements are
(vibrational angular momentuml ) 0 assumed for simplifica-
tion)

where Rθ ) (Fθθ/gθθ
0 )1/2/p, so the sum of the kinetic and

potential interaction terms is (1/4)a-1y(Vb + 2)[-g1Rθ + Frθθ

Rθ
-1] in this case. The expression in square brackets is evalu-

ated in Table 3 for SiHD3 and also for SiHF3.52 There are two
obvious points: First, the matrix element contributions from
the kinetic and potential terms are of opposite sign. Second,
the absolute values of these contributions are comparable,
resulting in significant cancellation, which is even more
pronounced for SiHD3 than for SiHF3. Thus, the Fermi
resonances involving Si-H stretching and bending motions are
unimportant for SiHD3 and SiHF3. This implies a slow energy
redistribution between the stretching and bending motions3 and
contributes to the local mode character of these vibrations.

It is interesting to note that early work on resonances in CO2,53

CHF3, and CHCl354 suggested a dominance of kinetic energy

TABLE 1: Expansion Coefficients of the One- and Three-dimensional Dipole Moment surfaces for SiHD3 Obtained by Fitting
to the ab initio Data Pointsa

Mx andMy Mz

coefficients 3D-DMS coefficients 1D-DMS 3D-DMS1 3D-DMS2

C010
x ) C010

y (D rad-1) 1.25327(52) C000
z (D) 0.0 0.0 0.0

C020
x ) -C020

y (D rad-2) 0.00436(60) C011
z (D rad-2) - 0.4589 (16) 0.4510 (23)

C021
x ) C021

y (D rad-3) -0.2817 (27) C030
z (D rad-3) - -0.0402 (18) -

C031
x ) -C031

y (D rad-4) 0.083 (27) C022
z (D rad-4) - -0.023 (16) 0.096 (22)

C040
x ) C040

y (D rad-4) 0.0231 (27) C100
z (DÅ-1) -1.3130 (11) -1.31048 (23) -1.31048 (34)

C110
x ) C110

y (DÅ-1 rad-1) 0.16305(24) C111
z (DÅ-1 rad-2) - 0.1514 (26) 0.1514 (40)

C120
x ) -C120

y (DÅ-1 rad-2) -0.0566 (24) C200
z (DÅ-2) -0.4427 (38) -0.4618 (11) -0.4600 (17)

C121
x ) C121

y (DÅ-1 rad-3) -0.0187 (10) C211
z (DÅ-2 rad-2) - 0.226 (10) 0.215 (16)

C210
x ) C210

y (DÅ-2 rad-1) 0.2683 (28) C300
z (DÅ-3) 0.4882 (74) 0.4814 (16) 0.4814 (24)

C220
x ) C220

y (DÅ-2 rad-2) -0.0211 (68) C400
z (DÅ-4) 0.017 (10) 0.1069 (73) 0.100 (11)

C310
x ) C310

y (DÅ-3 rad-1) -0.0663 (13) C500
z (DÅ-5) 0.121 (14) - -

RMS of the residuals (D) 1.2× 10-4 6.9× 10-4 4.1× 10-3 6.1× 10-3

a The uncertainties given in parentheses are 1 standard error in the last significant digits. See text for details. 1 Å) 10-10 m, 1 D ) 3.33564×
10-30 C m.

TABLE 2: Kinetic Coefficients and Optimized Potential
Energy Parameters for SiHD3

a

kinetic potential

grr (u-1) 1.027 98 De (aJ) 0.76104 (44)
gθθ

0 (u-1 Å-2) 0.951338 a (Å-1) 1.39200 (54)
g1 (u-1 Å-3) -0.964861 ω (cm-1) 2268.415
g2 (u-1 Å-1) 0.00805744 ωx (cm-1) 33.578
g3 (u-1 Å-4) 1.950 03 Fθθ (aJ) 0.4631 (17)
g4 (u-1 Å-2) 0.389380 Fθθθ (aJ) 0b

g5 (u-1 Å-2) -0.660982 Fθθθθ (aJ) 0.618 (94)
g6 (u-1 Å-2) 0.286892 Frθθ(aJ Å-1) -0.372 (11)
g7 (u-1 Å-2) -0.383931 Frrθθ (aJ Å-2) 0b

a Definitions of the kinetic parameters are given in ref 11. The
uncertainties given in parentheses are standard error in the last
significant digit. The atomic mass unit is au, 1 Å) 10-10 m, and 1 aJ
) 10-18 J. b Constrained to zero; see text for details.

〈Vb|pθ
2|Vb+2〉 ) -[(Vb + 2)/2]Rθ

〈Vb|θ2|Vb+2〉 ) +[(Vb + 2)/2]Rθ
-1 (14)

6068 J. Phys. Chem. A, Vol. 105, No. 25, 2001 Lin et al.



coupling over potential energy coupling in curvilinear coordinate
models. A later theoretical survey study55 for a larger set of
molecules showed, however, that the potential coupling terms
are not negligible in general and that their contributions are
needed for quantitative predictions and sometimes even for
qualitative purposes. The experimental finding for SiHD3 and
SiHF3 in the present contribution supports the conclusion that
Fermi resonances cannot be described by kinetic coupling alone.

Intensity Calculations

The absolute vibrational band intensityI can be calculated
as

Here|0〉 and|N〉 denote the vibrational ground and excited states,
respectively,V0 is the transition wavenumber in cm-1, T is the
sample temperature in the measurement,Qv(T) is the vibrational
partition function at temperatureT, c is the speed of light, and
k and h are Boltzmann and Planck constants, respectively.
Approximately, [1- exp(-hcV0/kT)] = 1 andQv(T) = 1 hold.
The parallel band intensityI| and perpendicular band intensity
I⊥ are thus given as

Here,K ) 4.162 375 5× 10-19 cm2 (making use of 1 D≡ 1
D ) 10-18 (dyn)1/2 cm2 in the cgs system, corresponding to
3.335 64× 10-30 C m in SI units.34) The result can be further
converted into the unit of cm-2 ATM-1 by multiplying with a
factor of 2.6867× 1019.

In a similar way, which is detailed in ref 40, the intensities
can be obtained with different models:
(i) “Single Morse” (SM) model. A simple Morse function is
used to describe the Si-H stretching vibration motion, without
considering the bending modes. Both the ground and excited
states are assumed to be pure stretching states, and only the
one-dimensional DMS is used in this model. The Morse
parameters have been given in section IV.
(ii) “1D” model. A Morse function is used to describe the Si-H
stretching vibration motion, and harmonic oscillator basis
functions are used for the bending modes. The reduced three-
dimensional Hamiltonian model described above is applied. The
ground state is|Vs ) 0, Vb ) 0 > and the excited state is|Vs )
n1, Vb ) n5 >. The one-dimensional DMS is used in this model.
(iii) “3D” model. This is analogous to the “1D” model, but the
three-dimensional DMS is used.

The intensities both of parallel and perpendicular bands were
calculated. The needed matrix elements are given explicitly in

refs 8, 42, and 50. The relative intensities were determined as
I/IV1. For the parallel bands, 1D-DMS was employed in the SM
and 1D models, with the results being denoted SM and 1D,
respectively, while both 3D-DMS1 and 3D-DMS2 were used in
the 3D model, with the respective results being referred to as
3D1 and 3D2. Since the 3D1 and 3D2 results are almost identical,
we only present the former under the label 3D. For the
perpendicular bands, there is only one set of 3D-DMS, and the
results are again labeled as 3D. The absolute intensities are given
in Table 4, and intensities relative toV1 are listed in Table 5.
The experimental intensities are also given.

There are several points concerning the results which should
be noted.

First, the overall agreement between the calculations and
observations is reasonable both for absolute and relative
intensities, although the calculation is still not of experimental
accuracy. The agreement is most satisfactory for all perpen-
dicular bands, and also for parallel bands with low excitations.
This can be seen from Tables 4 and 5 and also from Figure 2,
where relative intensities are displayed. The intensities of the
stretching bandsInV1 calculated by the SM, 1D, and 3D models
are close to each other. Therefore, when only such bands are
considered, all three models are applicable. The SM model is
particularly simple and easy to implement and, thus, can be used
as a good first-order approximation for semiquantitative predic-
tions.

Second, it is interesting to see that the intensities of the
stretching bands decrease rapidly from theV1 to the 3V1 bands
by a factor greater than 100 in each step. However, the intensity
of the 4V1 band is on the same order as and even slightly larger
than that of 3V1. The experimental ratioI3V1/I4V1 is about 0.56.
The predicted values are 1.07, 0.92, and 0.80 for the SM, 1D,
and 3D models, respectively. This behavior is caused by the
cancellation of the contributions from the linearC100

z and
quadraticC200

z terms in the DMS, which has been discussed in
more detail elsewhere.52 Here we give only a brief explana-
tion: Compared with theC100

z term, the relative contributions
from higher-order terms such asC200

z increase rapidly as
excitation increases and cannot be neglected except for the case
n1 ) 1. These two contributions have opposite signs whenn1

> 1, which results in a strong cancellation and a rapid decrease
of intensity for 2V1 and 3V1 transition. Whenn1 g 3, the
cancellation is so significant that the third-order termC300

z

becomes important or even dominant. The overall cancellation
effect is more serious forn1 ) 3 than forn1 ) 4, such that 3V1

becomes weaker than 4V1.
Finally, it can be seen that the stretchingn1V1 bands are

usually much stronger than the stretching-bending (n1 - 1)V1

+ 2V5 combination bands. However, the intensity of the 3V1

band is found to be comparable with that of the 2V1 + 2V5 band,
as is evident from Figure 3, where the intensities of then1V1

and (n1 - 1)V1 + 2V5 bands are compared. The experimental
ratio I2V1+2V5:I3V1 is about 0.43:0.57. The 1D model cannot
reproduce this observation because the bending motion has been
neglected in the one-dimensional DMS. As a result, the Si-H
stretching will carry all strength of the transition, and the
stretching-bending combinations can only borrow some intensity

TABLE 3: Some Selected Approximate Values of Kinetic Coefficients and Potential Parameters for SiHD3 and SiHF3 Speciesa

g1

(u-1 Å-3)
Frθθ

(aJ Å-1)
gθθ

0

(u-1 Å-2)
Fθθ

(aJ)
Rθ

(aJ1/2 u1/2 Å)
FrθθRθ

-1 - gR1θ
(aJ1/2 u-1/2 Å-2)

SiHD3 -0.9649 -0.3720 0.9513 0.4631 0.6977 -0.5331+ 0.6732) 0.1401
SiHF3 -1.0258 -0.4740 0.7757 0.5548 0.8457 -0.5605+ 0.8675) 0.3070

a Data for SiHF3 from ref 52. The atomic mass unit is au, 1 Å) 10-10 m, 1 aJ) 10-18 J, andRθ ) (Fθθ/gθθ
0 )1/2/p.

I )
8π3V0

3hcQV(T)[1 - exp(-
hcV0

kT )]|〈N|M |0〉|2 (15)

I| )
8π3V0

3hc
|〈N|Mz|0〉|2 ) KV0|

〈N|Mz|0〉
Debye

|2

I⊥ )
8π3V0

3hc
|〈N|Mx|0〉

Debye
|2 +

8π3V0

3hc
|〈N|My|0〉

Debye
|2

) KV0(|〈N|Mx|0〉
Debye |2 + |〈N|My|0〉

Debye |2) (16)
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from the pure stretching overtones through resonances. That
is, the relative band intensities are largely determined by the
pure stretching character of the true eigenfunction of each band.
As the Fermi resonance is insignificant and the wave function
mixture is small, the ratio ofI(n1-1)V1+2V5:InV1 is very small. The
calculations by the 1D model giveI2V1+2V5:I3V1 = 0.005:0.995.
However, the 3D calculations yield much better agreement with
the experiment, withI2V1+2V5:I3V1 = 0.22:0.78. This confirms the
importance of the bending motion in the multidimensional DMS
for intensity investigations.40-42

Summary

In this work, we report on the internal coordinate force field
and overtone band intensities for the Si-H chromophore in the
SiHD3 molecule. The potential parameters were optimized by
fitting to the experimental band centers. The insignificance of
the Fermi resonance between the Si-H stretching and bending
motions is found to arise from cancellation of the contributions
from kinetic and potential terms, which favors local mode
character. The band intensities were calculated by using ab initio

TABLE 4: Observed and Calculated Absolute Band Intensities of SiHD3a

I (cm-2 ATM -1)

sym. Ṽobs (cm-1) assignment Ṽcal (cm-1) obs SM 1D 3Db

A1 1690c 2V5 1693.294 - 0.12 7.0
2187.207 V1 2186.807 255 335 336 331
- 4V5 3363.202 - - 0.31× 10-3 0.17× 10-2

3852 V1 + 2V5 3851.273 - - 0.84× 10-3 0.20× 10-1

4307.09 2V1 4306.462 1.02 1.76 1.83 1.69
5943c 2V1 + 2V5 5942.115 - - 0.21× 10-4 0.12× 10-2

6359 3V1 6358.966 0.84× 10-3 0.47× 10-2 0.39× 10-2 0.42× 10-2

- 3V1 + 2V5 7965.828 - - 0.11× 10-4 0.76× 10-4

8344 4V1 8344.322 0.15× 10-2 0.46× 10-2 0.44× 10-2 0.49× 10-2

- 5V1 10262.535 - 0.91× 10-3 0.88× 10-3 0.89× 10-3

12111.39 6V1 12113.614 - 0.15× 10-3 0.15× 10-3 0.13× 10-3

13897.51 7V1 13897.580 0.34× 10-4 0.25× 10-4 0.24× 10-4 0.20× 10-4

15614.66 8V1 15614.555 0.13× 10-5 0.45× 10-5 0.43× 10-5 0.31× 10-5

17265.70 9V1 17265.601 - 0.85× 10-6 0.83× 10-6 0.53× 10-6

E 850.681 V5 851.268 357 - - 536
2531d 3V5 2533.202 - - - 0.27
3024 V1 + V5 3023.654 1.77 - - 0.74
- V1 + 3V5 4676.770 - - - 0.19× 10-2

5130 2V1 +V5 5128.893 0.80× 10-1 - - 0.71× 10-1

- 2V1 + 3V5 6753.215 - - - 0.48× 10-4

7165 3V1 + V5 7166.991 0.60× 10-2 - - 0.60× 10-2

- 4V1 + V5 9137.954 - - 0.54× 10-3

a Experimental data are the same as those in refs 12 and 19. See these references for more details. No experimental data are given for those bands
which are either not covered by the spectral window or buried in other strong absorptions (e.g., water absorptions). The results obtained by use of
the SM, 1D, and 3D models are denoted as SM, 1D, and 3D, respectively.b 3D1 results for the parallel bands (see text). The 3D2 results differ
negligibly in 12 out of 14 cases, slightly for 3V1 + 2V5 (0.70E-4) and significantly only for 4V5 (0.31× 10-3), indicating that theC030

z term is not
overly important (see section III).c Given a weight of 0.2 in the force field fitting.d Not used in the force field fitting due to large uncertainty.

TABLE 5: Observed and Calculated Relative Band Intensities of SiHD3a

I/IV1

sym. Ṽobs (cm-1) assignment Ṽcal (cm-1) obs SM 1D 3Db

A1 1690c 2V5 1693.294 0.14× 10-1 d - 0.35× 10-3 0.21× 10-1

2187.207 V1 2186.807 1.00 1.00 1.00 1.00
- 4V5 3363.202 - - 0.10× 10-5 0.46× 10-5

3852 V1 + 2V5 3851.273 0.14× 10-3 d - 0.25× 10-5 0.60× 10-4

4307.09 2V1 4306.462 0.40× 10-2 0.53× 10-2 0.54× 10-2 0.51× 10-2

5943c 2V1 + 2V5 5942.115 0.25× 10-5 d - 0.59× 10-7 0.37× 10-5

6359 3V1 6358.966 0.33× 10-5 0.15× 10-4 0.12× 10-4 0.13× 10-4

- 3V1 + 2V5 7965.828 - - 0.32× 10-7 0.22× 10-6

8344 4V1 8344.322 0.59× 10-5 0.14× 10-4 0.13× 10-4 0.15× 10-4

- 5V1 10262.535 - 0.29× 10-5 0.26× 10-5 0.27× 10-5

12111.39 6V1 12113.614 - 0.49× 10-6 0.42× 10-6 0.40× 10-6

13897.51 7V1 13897.580 0.13× 10-6 0.83× 10-7 0.71× 10-7 0.60× 10-7

15614.66 8V1 15614.555 0.51× 10-8 0.15× 10-7 0.13× 10-7 0.94× 10-8

17265.70 9V1 17265.601 - 0.29× 10-8 0.25× 10-8 0.16× 10-8

E 850.681 V5 851.268 1.40 - - 1.62
2531d 3V5 2533.202 0.49× 10-3 d - - 0.82× 10-3

3024 V1 + V5 3023.654 0.69× 10-2 - - 0.22× 10-2

- V1 + 3V5 4676.770 - - - 0.54× 10-5

5130 2V1 +V5 5128.893 0.31× 10-3 - - 0.21× 10-3

- 2V1 + 3V5 6753.215 - - - 0.13× 10-6

7165 3V1 + V5 7166.991 0.24× 10-4 - - 0.18× 10-4

- 4V1 + V5 9137.954 - - 0.16× 10-5

a See text for details. The notation is defined in footnote a of Table 4.b 3D1 results for the parallel bands (see text). The 3D2 results differ
negligibly in 12 out of 14 cases, slightly for 3V1 +2V5 (0.20E-6), and significantly only for 4V5 (0.10E-5). c Given a weight of 0.2 in the force
field fitting. d Estimated values of larger uncertainty.e Not used in the force field fitting due to large uncertainty.
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one- and three-dimensional DMS, and they agree reasonably
well with observations. The successful reproduction of the
relative intensities within the stretching-bending combination
(n1 - 1)V1 + 2V5 dyads and the stretchingn1V1 bands underlines
the importance of the bending motion in the multidimensional
DMS for intensity investigations.
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