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Overtones of the SiH stretching-bending polyad of the SiHPmolecule are studied using an internal
coordinate force field model. The potential parameters are optimized by fitting to the experimental band
centers. The Fermi resonance between theHSstretching and bending motions is insignificant due to
cancellation of the contributions from kinetic and potential terms. This suggests a slow redistribution of
vibrational energy between these two degrees of freedom and induces local mode character of respective
vibrations. Band intensities are calculated by using ab initio one- and three-dimensional dipole moment surfaces
(DMS). These agree reasonably well with the observations. The successful reproduction of relative intensities
between ther(; — 1)1 + 2us stretching-bending combination bands and te; stretching bands establishes

the importance of the bending motion in the multidimensional DMS for intensity investigations.

Introduction there are both kinetic and potential contributions to the Fermi

. L ) interactions, the former being always present. Therefore, it is
The dynamics of molecular vibrations have been of interest desirable to gain deeper insight into this problem.

for some time due to their importance for the development of
bond-selective photochemistry. For-X stretching vibrations,
there are two limiting cases: On one hand, local mode behavior
is found in some XH (X = S, Se, Te; As, Sb, Si; Ge and Sn;

n = 2, 3, and 4) moleculég and their isotopomers, which
implies that the vibrational energy remains localized in an
individual X—H bond for a long time. On the other hand, the
strong Fermi resonance between the-HC stretching and
bending motions in CH¥-type species (Y= D, F, Cl, Br, |,
and CR)3~5 leads to a fast intramolecular vibrational redis-
tribution (IVR) between these degrees of freedom. It shoul
be instructive to study the connection between these two

extremes. polyad depend largely on the mixing of wave functions through
The SiHDy molecule provides us some possibilities for this Fermi resonances. It will be interesting to see if this is also

purpose because it is a near-local-mode molecule with any e for SIHD,
isolated Si-H chromophore that is analogous to the-ig :
chromophore in CHY species. One might argue that the strong
Fermi resonance between the stretching and bending motion
is specific for the G-H chromophore because for the other X
chromophores the stretching fundamentals are far away from
the first bending overtones. However, the corresponding energy
differences in the CHBf and CHE® molecules are also large,
while the Fermi resonance is still prominent. Moreover, from
the point of view of the internal coordinate force field motiet

Another motivation for the present study comes from the
modeling of the intensities of the SH stretching-bending
polyads in SiHIR as excitation increases. Experiments show
that the intensities of the stretching bands decrease rapidly and
uniformly from v to 3v1. However, this trend is interrupted for
4v;, whose intensity is slightly larger than that o#,32
Moreover, it is usually assumed that only the-& or X—H
stretching motions carry absorption intensity and that the
stretching-bending combination bands will borrow some inten-
d sity from the pure stretching overtones through resonances. Such
an assumption has been successfully applied to $ip¥cies, >
showing that the relative intensities within each Fermi resonance

As one of the near-local-mode molecules, SiHias been
Jhe subject of several low and high-resolution infrafeéf and
microwave spectroscopic studi&<® The v; state was found
to be perturbed by unknown dark states. A definite perturbation
was also observed in the2band when)' > 1312 By contrast,
the Gn, 7v1, 8v1, and 9, states were found to be free of
perturbationd?1%20The 3; and 4/, states have not yet been
described experimentally, but their band origins were predicted
theoretically by Wang and Sibéftoy high-order canonical Van
« Corresponding author. On leave from Open Laboratory of Bond Vleck perturbation theory (CVPT) based on a high-level quartic
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affected by Si-H bending, although some of them are perturbed spectra from eq 3. The uncertainties of intensities of the 7

by states due to other vibrational combinations. and 8, bands were reported to be 30%.
In this work, we will focus on the SiH stretching and
stretching-bending overtones of SiHDVibrational wavenum- Dipole Moment Surface

bers and intensities of stretchingending overtones up to 9000
cm~1 (including 31 and 4;) will be reported as obtained from
Fourier transform infrared (FTIR) spectra recorded in Wupper-
tal.}2 Transition frequencies and intensities will be studied using
a chromophore force field model in terms of internal coordinates.
The potential parameters will be optimized by fitting to the
experimental band centers. One- and three-dimensional dipol
moment surfaces (DMS) will be calculated ab initio. Band
intensities will be determined by use of the ab initio DMS and
compared with the observations.

The ab initio calculations were carried out at the CCSD(T)
level (coupled cluster theory with all single and double
substitutions from the Hartreg=ock reference determin&ht
augmented by a perturbative treatment of connected triple
excitationg®29 using the correlation-consistent polarized valence

equadrupleé cc-pVQZ basis sett The calculations employed
the Molpro2000 packadé? both for geometry optimization
and for single-point calculations to generate the DMS.

The optimized equilibrium SiH bond length isRsiy =
1.47983 A. The dipole moment was calculated numerically as

Experiment energy derivative by finite difference. A finite dipole field was
) ) added to the one-electron Hamiltonian. The field strength was

The spectra of SiHpwere recorded using a Bruker IFS120HR  cposen to be 0.005 au. Actually, a variety of values for the field
F(_)urler transform spectrometer. Details of thej overtone SpeCtrastrength were tested (ranging between 0.002 and 0.01 au), but
will be reported elsewher€. Here we describe only those  the gifferences between the resulting molecular dipole moments
aspects Whlph are relevant to the present wor.k. The spectra wergyqre negligible. When generating the DMS, we kept thesSiD
assigned vibrationally mainly on the basis of the CVPT fame fixed at its equilibrium configuration. For the one-
calculation by Wang and Sibett. The band centers were  gimensional DMS, the dipole moments were calculated as a
determined from low-resolution (0.2 ct) spectra. For the:3 function of the Si-H bond length displacement. In the case of
and 4/, bands, thd structure was resolved, and testructure the three-dimensional DMS, the -SH stretching and two
was partly resolved. The band centers were determined by takingsrthogonal Si-H bending motions were taken into consideration.
advantage of a fit of th& = 0 transitions only. The spectra It should be stressed that our internal coordinate model
above 3000 cm' are dominated by overtones of the-$i neglects the contributions of motions of the iltame to the
stretchingyy mode and combinations comprising of the-&i DMS and the force field (section IV). The normal-coordinate
stretching and other vibrational modes. Among these bands, they,oqe|s (without frozen Sipframe) allow for such contributions
Si—H stretching-bending;v; + nsus bands are prominent. Here, 54 therefore tend to be superior for low dimensional sub-
n; andns are thg vibrational quantum numbers of theandvs space$:3+35 Such models have been applied successfully in
modes, respectively. _elaborate spectroscopic and quantum dynamical studies of the

The absolu_te |nten_S|t|es of the FTIR spectra were obtained Fermi resonance in CHLI5-38 On the other hand, the internal
by means of integration coordinate model has been shown to reproduce the vibrational
energy levels and infrared intensities of CiHBuite well°

| = fo(y) dv Q) implying that it may be a good first approximation to neglect
the effect of harmonic coupling between the-8& chromophore
whereo is the absorption cross section at wavenumbéfhe and the CI frame vibrations in CHR'® We expect that this

results given in this work were obtained by averaging the @lso applies to SiHR
integration results over a variety of spectra. The relative For the one-dimensional DMS calculation, 30 data points
intensities were calculated accordingly. However, integration Were obtained by scanning the-8il bond length displacement
could not be performed for some bands where overlap is strong.” = R — Re in steps of 0.05 A ranging from-0.6 to 0.85 A,
In these cases, absolute intensities were not determined, whilevhereR denotes the instantaneous-$i bond length andRe
relative intensities were estimated from a comparison of the the equilibrium bond length. The corresponding CCSD(T) dipole
height of the strongest, fairly sharp peaks (e.g., Q branches) ofmoments are generally close to those computed previously by
the overlapped band and a band amenable to integration. |ta density functional metho#. The differences between these
should be pointed out that the uncertainties of the experimentaltwo data sets are small when the displacement is small but
intensities are quite large. The uncertainties of experimental become larger as the displacement increases. We expect that
absolute intensities are estimated to be less than 50% for thethe high-level CCSD(T) method used here yields more accurate
bands of medium intensity and less than 100% for the others. results, though it might also start to diverge if the bond is
Absolute intensities of the:{ and 81 bands were determined ~ sufficiently stretched.
earliet® by means of intracavity laser absorption spectrometry ~ We find that the DMS of SiHB does not possess a strong
(ICLAS) and reported as nonlinearity as in the case of CHZP CHBr;,*t and CHB.42
As the asymptotic behavior fd® — o is unimportant for our
intensity calculatiort®4344a polynomial function up to the fifth

G= IG(U) d(in v) © order was employed to fit the DMS
The relationship between these two definitions is approximately 5
as follows: M(r) = ZC?noorm 4)
=
I =Gy, 3)

Here,M; is the dipole moment component along the molecular
where v denotes the band center of the transition. To make Cg, axis, andC/,, is an expansion coefficient. Despite the
comparisons, we computed the intensitiefor the ICLAS poor asymptotic behavior, a good fit has been achieved for these
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. My and My components is as follows:
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. wheren is zero or a positive integer. Such a relationship is
. helpful in fitting the My and My components.

In practice, it is unnecessary to include many high-order terms
in the fit of the three-dimensional DMS, since the accuracy of
05 o0  os 10 the ab initio DMS may not be sufficient to determine high-
order terms. The results fdrl, and My components are listed
in Table 1 in the second column. For tMg component, two
Figure 1. One-dimensional dipole moment surfadé,) of SiHDs. sets of expansion coefficients were obtained, with @fg,

term being included in the first set (denoted as 3D-DM&hd
data points (see Figure 1). The fitted parameters denoted as 1Dpmitted in the second (denoted as 3D-Dj)inclusion of more

DMS are listed in Table 1. terms does not reduce the RMS values significantly and has
When Calculatlng the three-dimensional DMS we generated negl|g|b|e effect on the |ntens|ty calculations.

the grids by scanning the bond length displacenmentsteps

of 0.10 A ranging from—0.40 to 0.40 A ¢ direction) and two Internal Coordinate Force Field
orthogonal x,y) H—Si-D angle displacemeni&g; = ¢i — ¢ie

in steps of 2 ranging from—8° to 8°, where¢; andgic (i = 1

and 2) denote the instantaneous and equilibritmH—Si—D
angles. The third HSi—D angle¢s depends op; andg,. We
point out that our scanning steps are larger than those typically
applied in force field calculations due to the fact that we must
find a compromise between a wide scanning range and a smal
number of data points. We checked that the scanning steps used H=T+V (11)
presently are sufficient to produce realistic results. In total, 405

data points were calculated. The raw data were transformed into  where

symmetrized internal coordinates

r/0.1 nm

A reduced three-dimensional Hamiltonian model in terms of
curvilinear internal coordinat&shas been applied in the present
study. Only the SiH stretching and bending vibrations are
included. Here, we give just a brief description of the model
and refer to the literature for detaf’sThe vibrational Hamil-
Itonian takes the form

1 -, 10 o, 1
T = 20,02 + 500 P2 +——=0e(P+0,p. + P_O_p_) +
91 — (2A¢1 _ A¢2 _ A¢3)/\/6 zgrrpr 2909 p@ \/—gﬁ(p-!— +p+ p p )

2
0, = (A¢, — A¢po)IN2 (5) > 4(914 +2g)(p+6%p, +p_63p.) + 2 4(294 +gs+

The dipole moment vectavl has three componentsly, My, 39)(py0_0,p_+p6_6.,p)+ Ea oy +

and M, x, y, and z being the principal inertial axes in the 1 1,

equilibrium configuration. We found that the axes of the Eckart  532P/[(61Pg, + 02P5,) + (Py, 01 + Pg,0)] + ("G5 +

frames are almost superimposed to the principal inertial axes 1 2

due to the small bending angles. This suggests that the principal a 'g)y’p; (12)

inertial axes reference system used in this work are a good

approximation to the Eckart reference fraffg?® and
According to the dipole transition selection rules for mol-

ecules ofCs, point group, theM, component leads to totally V= DJZ + F9002 + Feae(@3 + 03) + = 24 000904
symmetric As) transitions, while thevl, and My components 1
give rise to E symmetry transitions. All components are Ea_lF,%y@Z—irZ(a_zF”%—F a 'F)y0° (13)

expanded in symmetrized internal coordinates. This treatment
is different from the expansion of DMS in rectilinear normal

) . In the above equations, the curvilinear internatBistretch-
coordinates. The expansion formulas are as follefvs:

ing displacement coordinate is denote@nd6,; and6, are the
0 09+ 9% o symmetrized StH bending coordinates, as mentioned above.
+ Y- + Y-

) (6)

IEAEDY p_q;n Ci Jm(f

m

Here,p, is the momentum conjugate to andp,, and pez are
the momenta conjugates tq and 6, respectwelypa p9
pa P = Pe, = iPs,, and62 = 6>+ 62 The Morse coordinate

6% 69 + 69 6" is denoted ag=1— exp(—ar), Wherea is the Morse parameter.
M(r,0,,0,) = z Z C’r; o qrm (7 Explicit expressions for the kinetic energy expansion coefficients
™ p—¢=3n1 Orrs gg{,, andgi(i = 1, 2, ..., 7) are given in detail elsewhéte.
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TABLE 1: Expansion Coefficients of the One- and Three-dimensional Dipole Moment surfaces for SiHPObtained by Fitting
to the ab initio Data Points?

My andMy M,

coefficients 3D-DMS coefficients 1D-DMS 3D-DMS 3D-DMS,
Clio= Clyo (D rad™?) 1.25327(52) Cloo (D) 0.0 0.0 0.0
Cozo= —Chyo (D rad™? 0.00436(60) Ci,, (D rad) - 0.4589 (16) 0.4510 (23)
Coo1= C%n (D rad™3) —0.2817 (27) Ciyo (D rad ) - —0.0402 (18) -
0331 Cls, (D rad) 0.083 (27) CZ,, (D rad) - —0.023 (16) 0.096 (22)
Chio= 0040 (D rad™) 0.0231 (27) Cloo (DAY —1.3130 (11) —1.31048 (23) —1.31048 (34)
C= c110 (DA-1rad™) 0.16305(24) C:,, (DA 1rad?) - 0.1514 (26) 0.1514 (40)
CL= —Cly0 (DA-1rad?) —0.0566 (24) Cloo (DA2) —0.4427 (38) —0.4618 (11) —0.4600 (17)
Cio = c:121 (DA-1radd) —0.0187 (10) Ci,, (DA2rad?) - 0.226 (10) 0.215 (16)
Chio= c210 (DA—2rad™) 0.2683 (28) Clyo (DA3) 0.4882 (74) 0.4814 (16) 0.4814 (24)
Co= Cloo (DA-2rad™) —0.0211 (68) Clyo (DA% 0.017 (10) 0.1069 (73) 0.100 (11)
Cay0= Clyo (DA *rad™?) —0.0663 (13) Clyo (DA-9) 0.121 (14) - -
RMS of the residuals (D) 1.2 10 6.9x 10 4.1x 108 6.1x 1072

aThe uncertainties given in parentheses are 1 standard error in the last significant digits. See text for detaits02%mn, 1 D= 3.33564x
1030 C m.

Definitions of the potential energy paramet®s Fgg, Fooo, TABLE 2: Kinetic Coefficients and Optimized Potential
Fosse, Froo, andFy ¢ are as customary and have also been given Energy Parameters for SiHD;?
explicitly in the literature. They will not be repeated here. kinetic potential

A FORTRA.I\.I code hgs beer! dgveloped for the present study, g" ) 1.027 98 D. (aJ) 0.76104 (44)
which was utilized to first optimize the potential surfaces by 0, (U LA 0.951338  a(A) 1.39200 (54)
fitting to the observed energy levels and then to calculate the g, (u—1A-3) —0.964861 o (cm™Y) 2268.415
intensities by using the optimized potential surfaces and ab initio g (Ut A1) 0.00805744 wx (cm™) 33.578
DMS. The optimizations were performed by a nonlinear least- 93 (U’iA’:) 1.950 03 Fos (aJ) 0.4631 (17)
squares algorithrfi The vibrational wave functions and eigen- % (U~ A=) 0.389380  Fyy (aJ) Y

s s . Os (U lA 2) —0.660982 Foooo (aJ) 0.618 (94)

values were calculated var_latlonally. The Morse functions were g (U2 A9 0.286892 Froo(ad AY) ~0.372 (11)
chosen to be consistent with the parametei3e, andgy,. The g (U A2  —0.383931 Freoo (@) A2)

harmonic oscillator basis functions were chosen to be consistent  Definitions of the kinetic parameters are given in ref 11. The
with the kinetic coefficientgsy and force constankgs. The oo inties given in parentheses are standard error in the last
matrix elements for all terms of the Hamiltonian are given in  gjgnificant digit. The atomic mass unit is au, 154102 m, and 1 aJ

ref 11. We adopted the described two-step procédtmeeduce = 10718 J.b Constrained to zero; see text for details.

the sizes of the Hamiltonian matrices. The basis'setgre

constructed as follows: The maximum vibrational quantum motions is unimportant for SiH§) and the corresponding wave

number for the stretching and bending modes ware= 10 functions mix only very slightly. The reason for this very small
andns = 30, respectively. The maximum vibrational angular stretching-bending coupling is the cancellation of contributions
momentum quantum number for the bending mode Was5. from the kinetic and the potential coupling terms. This can be

The highest zero-order energy of the pure bending basisunderstood as follows. By checking the Hamiltonian matrix
functions was 27 000 c, while that of the stretchingbending elements, we find that the kinetic coupling terf)agwyp;,
basis functions was 36 000 ct and the potential coupling termt/{)a—1F,ypy62, dominate the

In total 15 experimental band cent&rsvere used as input ~ Fermi interactions. The corresponding matrix elements are
data, with the one at 2531 crhbeing omitted due to large  (vibrational angular momentuin= 0 assumed for simplifica-
experimental uncertainty (see also Table 4 below). Standardtion)
weights of 1.0 were assigned to all data, expect for two

overlapped bands at 1690 and 5943 énthat were given Dvb|p§|ub L= —[(v, + 2)/2]e,
smaller weights (0.2). The cubic bending telfg, which will ) .
couple states with different vibrational angular momentum | 0700 +H(v, + 2)/2)at, (14)

numbers was constrained to zero because there is at present no
experimental evidence for this kind of coupling. To overcome where ay = (Faolg)p)V2Ih, so the sum of the kinetic and
the strong correlation betwedhgy and F g9, we adopted the  potential interaction terms is/g)a ty(vp + 2)[—g10ts + Froo
method! to constrainF, g9 and the whole coefficient of thgo? a;l] in this case. The expression in square brackets is evalu-
term to zero. This treatment removed the interdependence andated in Table 3 for SiHpand also for SiHE>? There are two
yielded a fit with a root-mean-square (RMS) deviation value obvious points: First, the matrix element contributions from
of 0.66 cnT?, which is smaller than the experimental uncertainty. the kinetic and potential terms are of opposite sign. Second,
The kinetic coefficients and optimized potential parameters are the absolute values of these contributions are comparable,
listed in Table 2. The energy levels of the stretching overtones resulting in significant cancellation, which is even more
were also modeled by a Morse oscillator whose parameters werepronounced for SiHP than for SiHR. Thus, the Fermi
obtained from a fit to the experimental dafarhe results are  resonances involving SiH stretching and bending motions are
o = 2253.92(18) cm!, andwx = 33.559(21) cm?, with an unimportant for SiHR and SiHR. This implies a slow energy
RMS = 0.365 cnTl. The uncertainties given in parentheses are redistribution between the stretching and bending motians
1 standard error in the last significant digits. contributes to the local mode character of these vibrations.
Consistent with the results of the recent CVPT stéftithe It is interesting to note that early work on resonances iR, 20
Fermi coupling between the SH stretching and bending CHF;, and CHC§>* suggested a dominance of kinetic energy
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TABLE 3: Some Selected Approximate Values of Kinetic Coefficients and Potential Parameters for SiHDand SiHF; Species

O1 FrGG gg FG(J Qg Frgg(la %

(utA-3 (@J A (ut X*Z) (ad) (a2 ut2 &) (ad2y-12 A )
SiHD3 —0.9649 —0.3720 0.9513 0.4631 0.6977 —0.5331+ 0.6732=0.1401
SiHR; —1.0258 —0.4740 0.7757 0.5548 0.8457 —0.5605+ 0.8675= 0.3070

aData for SiHR from ref 52. The atomic mass unit is au, 121070 m, 1 aJ= 10718 J, anday = (Feu/gdy)Y¥h.

coupling over potential energy coupling in curvilinear coordinate refs 8, 42, and 50. The relative intensities were determined as
models. A later theoretical survey stitflyor a larger set of I/1,,. For the parallel bands, 1D-DMS was employed in the SM
molecules showed, however, that the potential coupling termsand 1D models, with the results being denoted SM and 1D,
are not negligible in general and that their contributions are respectively, while both 3D-DMSand 3D-DMS were used in
needed for quantitative predictions and sometimes even forthe 3D model, with the respective results being referred to as
qualitative purposes. The experimental finding for Sg-Hnhd 3D; and 3D. Since the 3Dand 3D results are almost identical,
SiHF; in the present contribution supports the conclusion that we only present the former under the label 3D. For the
Fermi resonances cannot be described by kinetic coupling aloneperpendicular bands, there is only one set of 3D-DMS, and the
results are again labeled as 3D. The absolute intensities are given

Intensity Calculations in Table 4, and intensities relative tq are listed in Table 5.
The experimental intensities are also given.

There are several points concerning the results which should
be noted.

The absolute vibrational band intensitycan be calculated
as

83131/0 hcy, First, the overall agreement between the calculations and
—exp(—k—)]|[]\l|M|0[]]2 (15) observations is reasonable both for absolute and relative
3hCQ M T intensities, although the calculation is still not of experimental

accuracy. The agreement is most satisfactory for all perpen-
. . o . ) dicular bands, and also for parallel bands with low excitations.
respectively o is the_transmon Wavenumbgr n Cﬁ‘] Tis the This can be seen from Tables 4 and 5 and also from Figure 2,
sam_p_le temperature in the measure_m@c(ﬂ') is the V|b_rat|ona| where relative intensities are displayed. The intensities of the
partition function at temperaturg c is the speed of light, and stretching bands,, calculated by the SM, 1D, and 3D models

k'andh are lBoItzmann a;]nd Elan(ik congtants,:es;r)]e(l:éively. are close to each other. Therefore, when only such bands are
Approximately, [1— exp(=hcuo/kT)] = 1 andQy(T) = 1 hold. considered, all three models are applicable. The SM model is

IThe paLaIIeI t_)and intensity and perpendicular band intensity particularly simple and easy to implement and, thus, can be used
o are thus given as as a good first-order approximation for semiquantitative predic-

Here|0Cand|NCdenote the vibrational ground and excited states,

3, 0 tions.
| = |IZN|M 0 = Ky | M, Dz Second, it is interesting to see that the intensities of the
I Yo Debye stretching bands decrease rapidly from théo the 31 bands

by a factor greater than 100 in each step. However, the intensity

3 3
8 U0|DN|Mx|OD.2 8 U°|[N|MV|OD|2 of the 41 band is on the same order as and even slightly larger

0= 3¢ | Debye' ' 3hc' Debye' than that of 3;. The experimental ratits,,/l4,, is about 0.56.
IN|M, |0 IN|M, |0 The predicted values are 1.07, 0.92, and 0.80 for the SM, 1D,
= KUo( E‘] L E‘]) (16) and 3D models, respectively. This behavior is caused by the
Debye Debye cancellation of the contributions from the line&,,, and

Here,K = 4.162 375 5x 1019 cn? (making use of 1 D= 1 quadraticC5,, terms in the DMS, which has been discussed in
D = 10718 (dyn)2 cn® in the cgs system, corresponding to More detail elsewher®. Here we give only a brief explana-
3.33564x 10730 C m in Sl units®¥) The result can be further ~ tion: Compared with the; o, term, the relative contributions
converted into the unit of cn? ATM ~* by multiplying with a from higher-order terms such &8, increase rapidly as

factor of 2.6867x 10%. excitation increases and cannot be neglected except for the case
In a similar way, which is detailed in ref 40, the intensities M = 1. These two contributions have opposite signs when
can be obtained with different models: > 1, which results in a strong cancellation and a rapid decrease

(i) “Single Morse” (SM) model. A simple Morse function is  of intensity for 2, and 3; transition. Whenn, = 3, the
used to describe the SH stretching vibration motion, without  cancellation is so significant that the third-order te@fy,
considering the bending modes. Both the ground and excitedbecomes important or even dominant. The overall cancellation
states are assumed to be pure stretching states, and only theffect is more serious fam, = 3 than forn; = 4, such that 3;
one-dimensional DMS is used in this model. The Morse becomes weaker than4
parameters have been given in section IV. Finally, it can be seen that the stretching; bands are
(i) “2D” model. A Morse function is used to describe the-$i usually much stronger than the stretching-bendimg— 1)v1
stretching vibration motion, and harmonic oscillator basis + 25 combination bands. However, the intensity of thg 3
functions are used for the bending modes. The reduced three-band is found to be comparable with that of the 2 2u5 band,
dimensional Hamiltonian model described above is applied. The as is evident from Figure 3, where the intensities of e
ground state i$vs = 0, v, = 0 > and the excited state jg8s = and fu — 1)v; + 2us bands are compared. The experimental
N1, up = Ns >. The one-dimensional DMS is used in this model. ratio Iz,+2,:13, is about 0.43:0.57. The 1D model cannot
(iii) “3D” model. This is analogous to the “1D” model, but the  reproduce this observation because the bending motion has been
three-dimensional DMS is used. neglected in the one-dimensional DMS. As a result, thetSi
The intensities both of parallel and perpendicular bands were stretching will carry all strength of the transition, and the
calculated. The needed matrix elements are given explicitly in stretching-bending combinations can only borrow some intensity
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TABLE 4: Observed and Calculated Absolute Band Intensities of SiH?

I (cm2ATM Y
sym. Dobs (CM™1) assignment Deal (CMY) obs SM 1D 3D

Aq 1690 2us 1693.294 - 0.12 7.0
2187.207 v 2186.807 255 335 336 331
- 4ys 3363.202 - - 0.31x 1078 0.17x 1072
3852 v+ 2us 3851.273 - - 0.84x 1078 0.20x 101
4307.09 i 4306.462 1.02 1.76 1.83 1.69
5943 201+ 2us 5942.115 - - 0.21x 104 0.12x 1072
6359 I 6358.966 0.84< 1073 0.47x 1072 0.39x 1072 0.42x 1072
- 3v1+ 2us 7965.828 - - 0.11x 10 0.76x 104
8344 4, 8344.322 0.15¢ 102 0.46x 1072 0.44x 1072 0.49x 102
- 501 10262.535 - 0.91x 1078 0.88x 1072 0.89x 1078
12111.39 (571 12113.614 - 0.15x 1073 0.15x 1078 0.13x 1078
13897.51 71 13897.580 0.34« 1074 0.25x 104 0.24x 104 0.20x 104
15614.66 8 15614.555 0.1% 10° 0.45x 10°° 0.43x 10°° 0.31x 10°°
17265.70 221 17265.601 - 0.85x 107 0.83x 1076 0.53x 107

E 850.681 Us 851.268 357 - - 536
2531 3vs 2533.202 - - - 0.27
3024 v+ s 3023.654 1.77 - - 0.74
- v1 + 3us 4676.770 - - - 0.19x 1072
5130 21 t+us 5128.893 0.80< 107t - - 0.71x 101
- 201+ 3us 6753.215 - - - 0.48x 104
7165 I+ s 7166.991 0.60< 1072 - - 0.60x 1072
- 4v1 + vs 9137.954 - - 0.54x 1078

a Experimental data are the same as those in refs 12 and 19. See these references for more details. No experimental data are given for those bands
which are either not covered by the spectral window or buried in other strong absorptions (e.g., water absorptions). The results obtained by use of
the SM, 1D, and 3D models are denoted as SM, 1D, and 3D, respectiaily.results for the parallel bands (see text). The, 8&sults differ
negligibly in 12 out of 14 cases, slightly fow3+ 2us (0.70E—4) and significantly only for s (0.31 x 10-3), indicating that theCf,, term is not
overly important (see section 11I3.Given a weight of 0.2 in the force field fitting.Not used in the force field fitting due to large uncertainty.

TABLE 5: Observed and Calculated Relative Band Intensities of SiH?

1,

sym. Dons (ML) assignment Veal (CM™Y) obs SM 1D 3D

Ay 1690 2us 1693.294 0.14< 1071 - 0.35x 1078 0.21x 10?
2187.207 v1 2186.807 1.00 1.00 1.00 1.00
- 4ps 3363.202 - - 0.10x 10°° 0.46x 1075
3852 v1+ 2us 3851.273 0.14< 10734 - 0.25x 107 0.60x 10
4307.09 0 4306.462 0.40< 102 0.53x 102 0.54x 102 0.51x 102
5943 201+ 2us 5942.115 0.25¢ 10754 - 0.59x 1077 0.37x 107
6359 7 6358.966 0.33« 10° 0.15x 10* 0.12x 10* 0.13x 10*
- 3v1+ 2us 7965.828 - - 0.32x 1077 0.22x 1076
8344 4, 8344.322 0.5% 10°° 0.14x 10* 0.13x 10* 0.15x 10*
- 501 10262.535 - 0.29x 107 0.26x 1075 0.27x 107
12111.39 61 12113.614 - 0.49x 106 0.42x 10°© 0.40x 10°©
13897.51 7 13897.580 0.1% 107 0.83x 1077 0.71x 1077 0.60x 1077
15614.66 81 15614.555 0.5k 10°8 0.15x 1077 0.13x 1077 0.94x 108
17265.70 9 17265.601 - 0.29x 1078 0.25x 1078 0.16x 1078

E 850.681 Us 851.268 1.40 - — 1.62
2531 3us 2533.202 0.49¢ 10734 - - 0.82x 1078
3024 v1+ s 3023.654 0.6% 1072 - — 0.22x 102
- v1+ 3us 4676.770 - - — 0.54x 10°°
5130 21 t+us 5128.893 0.3 1073 - — 0.21x 1073
- 201+ 3us 6753.215 - - - 0.13x 10°©
7165 I+ s 7166.991 0.24¢ 107 - - 0.18x 10
- 4+ vs 9137.954 - — 0.16x 10°°

2 See text for details. The notation is defined in footnote a of Tabk3D; results for the parallel bands (see text). The, 38sults differ
negligibly in 12 out of 14 cases, slightly fon3+2vs (0.2CE—6), and significantly only for 4s (0.1CE—5). ¢ Given a weight of 0.2 in the force
field fitting. 9 Estimated values of larger uncertainfNot used in the force field fitting due to large uncertainty.

from the pure stretching overtones through resonances. ThatSummary

is, the relative band intensities are largely determined by the

pure stretching character of the true eigenfunction of each band. In this work, we report on the internal coordinate force field
As the Fermi resonance is insignificant and the wave function and overtone band intensities for the-8 chromophore in the
mixture is small, the ratio ofn,—1)u,-+20s:1ney IS VEry small. The SiHDs; molecule. The potential parameters were optimized by
calculations by the 1D model give,,+2,s:13,, = 0.005:0.995. fitting to the experimental band centers. The insignificance of
However, the 3D calculations yield much better agreement with the Fermi resonance between the-Histretching and bending
the experiment, withy,,+2,5:13,, = 0.22:0.78. This confirms the ~ motions is found to arise from cancellation of the contributions
importance of the bending motion in the multidimensional DMS from kinetic and potential terms, which favors local mode
for intensity investigation&?-42 character. The band intensities were calculated by using ab initio
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10° g - - T . ; components of the ab initio three-dimensional DMS of SiHD
Py --0--cal 1 are listed in Table 3S. The ab initio calculations were carried
10°k 2 7 ---0---obs 1 out at the CCSD(T)/cc-pVQZ level using the frozen core
P/ 5 1 approximation. TheMly components of the three-dimensional
_10%f ® o g‘ 1 DMS were not calculated but can be derived by symmetry
~ r AR 1 considerations[CITE:He00JPC]. See also eqgs 9 and 10. This
~ 10°F g 3y 4y, 1 material is available free of charge via the Internet at http://
1 \ggfg‘%\ég 1 pubs.acs.org.
10° !' h 6\;1 Ty 1
= ~ 1 4
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